
01/25/2018

Use your JUCE card to
escape UI layout jail

�1

 
Nick Porcaro (Chief Scientist)  

moForte Inc.

01/27/2018

Background
• We've been building music

systems in Objective C for
many years dating back to the
NeXT Music Kit (1988) and
SynthBuilder (1994)

• moForte's products presently
use Faust/C++ for DSP and UI
is done with Objective C/UIKit

• Quick demo of GeoShred
(written in Objective C).

�2

01/27/2018

Transition to JUCE
• About a year ago, we started doing

prototyping using JUCE.
• We’ve also been experimenting with Faust to

JUCE UIs.
• For the past several months, we have been

working on standalone effect app in JUCE,
moDhwani.

• The plan is to eventually convert our full code
base to JUCE.

�3

01/27/2018

moDhwani
• moForte + Dhwani:
• One that produces beautiful musical sounds
• Name of a famous Bollywood musical.
• A girl’s name meaning sound
• Music festival in Singapore
• A girl who wants to do something and does it
• But also something more rude, look it up ;-)

�4

01/27/2018

Objective C/UIKit

• Powerful, elegant, but not cross platform.
• Extensive use of Interface Builder for UI
• Extensive use @selector, used to map

configuration XMLs to method calls.
• iOS autolayout is complex, hard to convert

existing interfaces.

�5

01/27/2018

“Stompbox” and "Panel" Layouts.

• Built using the Interface Builder +
Objective C code for complex UI
behavior. Sliders, knobs, switches
can send/respond to stacks of
controls.

• In order to effectively reproduce
these stompboxes/panels in JUCE,
we use Grid layout in code, instead
of manually laying out proportional
rectangles or an XML format.

• Complex control behavior was
ported from Objective C to C++/
JUCE.

�6

Objective	C/UIKit C++/JUCE

01/27/2018

Grid Layout

�7

01/27/2018

JUCE Grid Layout
• Flex/Box grid based on CSS standards
• Works like a responsive website.
• Not perfect, but special cases can be

encapsulated.
• Better to use code as opposed to a custom

XML file format because special case
handling creates redundant or complex XML

• Grid was sufficient because the UI only
needs to scale.

�8

01/27/2018

Overall layout of Tuning section

�9

01/27/2018

Vibrato

�10

01/27/2018

Tuning

�11

01/27/2018

Reverb

�12

01/27/2018

DSP parameter handling

• Objective C @selector is emulated using a HashMap
that maps a string to a static member function of a
class.

• This is done at app init time, as opposed to late binding
• Decided against updating all parameters out of

ValueTrees on each render callback.
• Immediate updating works well enough for us - we have

hundreds of parameters.

�13

01/27/2018

Defining a Dispatch Table

�14

01/27/2018

Defining a Dispatch Table

�15

01/27/2018

Custom Components
• Custom knob, segmented control and slider
• Custom Scale Editor
• Real time scale update with timers.
• Control Surface Editor: Combination of

drag/drop and grid layout works well.
• Somewhat simpler than UICollectionView
• Outline views useful in control surface editor

design, easier than drilling down.

�16

01/25/2018

Side by Side Demo, Sympathetic
Resonator with moDhwani,

Objective C (UIKit)/C++ (JUCE)

�17

01/27/2018

Summary
• Use Grid for UI layout, each part of the grid

can be a custom component.
• If you need a “responsive” layout, then you

can use a combination of FlexBox/Grid
• It’s not hard to write custom components if

you need to for your product ID.
• Can use either bitmaps, scaleable vector

graphics, or direct drawing for “skinning”
• DSP parameter mapping with HashMap

�18

